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In this article we consider a typical problem of the induced interaction for moving clusters in a conducting 
medium with external electric circuits. 

The conducting clusters in this model are two plane-parallel solid walls having a finite thickness and a constant 
conductivity; these walls undergo specified oscillatory motion which is symmetric with respect to the median plane. 
Currents in the external electric circuit create a uniform magnetic field; the magitude of the currents is determined 
by conditions in electric circuits themselves and by the induced interaction of the currents in the conducting medium. 

Using integral transformations, the equations for magnetic-field diffusion within the conducting wall and the 
Kirehhoff equations for the external electric circuits with corresponding additional conditions reduce to a system of 
ordinary differential equations which are solved numerically. The energy characteristics of the interaction process in 
the periodic mode of system operation are calculated (the amount of work done by the moving wall against the electric 
volume forces, and the amount of Joule losses in the conducting wall). It is shown that by exciting a magnetic field in 
the system with the aid of external emf sources it is possible to considerably reduce the Joule losses in comparison 
with the case of the external electric circuit closed by an ohmic load. 

i. An electric current 

+ ~ - ~ /  (1.1) 

p r o d u c e d  by  the  m o t i o n  of  a c o n d u c t i n g  m e d i u m  in an e l e c t r o m a g n e t i c  f i e ld  g i v e s  r i s e  to  an e l e c t r i c  body  f o r c e  
(EBF)  f =  ,-1 [j x HI and J o u l e  hea t .  

The work done by the moving medium against the EBF, ignoring Joule losses in the conducting medium itself 
(i. e., useful work), can be extracted from the system in the form of electric energy; therefore, this quantity is an 
important energy chanracteristie of the interaction process. In the local sense (when the mechanical work 

A = c -~ [j • HI V and the Joule heat Q = j 2/ff refer to a unit of volume of medium and a unit of time) the difference 
A -Q is determined to a considerable degree by the relationship between the vectors E and E H c -I [v • H) (Eq. (I.I); 
when the three vectors H, E and V are mutually perpendicular, we have [i] 

P = A  - -  Q =  k A ,  A = ( l - - k ) z  -2  zV2H2 s (1.2) 

w h e r e  the  p a r a m e t e r  k c h a r a c t e r i z e s  the  m a g n i t u d e  and d i r e c t i o n  of E in c o m p a r i s o n  wi th  c -1 (v • H), and i s  g i v e n  by 
the  r e l a t i o n  E = --kc-1 (v • It). 

It i s  now c l e a r  tha t  fo r  p o s i t i v e  w o r k  A,  the  u s e f u l  P can  e i t h e r  be  p o s i t i v e  o r  n e g a t i v e  (Q g r e a t e r  t han  A); t h i s  
i s  e n t i r e l y  d e p e n d e n t  on  the  r e l a t i o n s h i p  b e t w e e n  the  two t e r m s  in (1. ! ) .  

It i s  c l e a r  tha t  any d e v i c e  in t ended  fo r  c o n v e r t i n g  the  e n e r g y  of a m o v i n g  c onduc t i ng  m e d i u m  into e l e c t r i c  e n e r g y  
m u s t  p o s s e s  the  a b i l i t y  to r e g u l a t e  E in c o m p a r i s o n  wi th  c -1 (v • ~). In the  c a s e  of a c onduc t i on  MHF g e n e r a t o r ,  
t h i s  i s  a c h i e v e d  by chang ing  the  e x t e r n a l  load;  as  a r e s u l t ,  t he  v o l t a g e  b e t w e e n  e l e c t r o d e s  changes ;  t h i s  c a u s e s  a 
change  in the  e l e c t r i c  f i e ld  in  the  MHD channe l .  If w e  c o n s i d e r  the  i nduced  i n t e r a c t i o n  b e t w e e n  m o v i n g  c l u s t e r s  of a 
c o n d u c t i n g  m e d i u m  (or  a m e d i u m  wi th  a p e r i o d i c  c o n d u c t i v i t y  d i s t r i b u t i o n )  and a m a g n e t i c  f i e l d ,  we  can  on ly  c a l c u l a t e  
the  eddy e l e c t r i c  f i e ld  r e s u l t i n g  f r o m  the  change  in  t i m e  of m a g n e t i c  f i e ld  H. 
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Here,  if the external  magnetic field is t ime-cons tant ,  it can easi ly be shown f rom the Maxwell equations that 
when Rm << 1 the magnet ic-f ie ld  per turbat ion  owing to cur ren t s  in the c lus ters  is s m a l l  and the magnitude of the 
e lec t r ic - f ie ld  s t rength is E -- R~c -1 v•, i. e . ,  I kl ~ R m <<1; this is independent of the p a r a m e t e r s  of the outer 
loop through which energy is drawn. Here,  as is c lear  f rom (1.2), a lmost  all work done agains t the  EBF is dissipated 
in the fo rm of Joule heat; this explains the low efficiency of the pulsed-conduct ion MHD genera tors  considered in 
[2, 3] in compar i son  with conduction genera to rs .  It is now c lea r  that in o rde r  to inc rease  the efficiency of s imi lar  
devices  it is necessa ty  to use a var iable  external  magnetic  field (external winding is closed either through a var iable  
emf o r  is par t  of the tank circuit) .  Then, by changing the amplitude of H and the phase shift between c lus te r  
osci l la t ions and the external  emf we can control  the p a r a m e t e r  k and, consequently,  inc rease  the energy convers ion 
efficiency. 

The d iscuss ion  which follows shows that it is also poss ib le  to improve  the energy cha rac te r i s t i c s  for  induced 
interact ion Of c lus te r s  with e lec t r ic  windings by using an external emf for finite R m when, in principle,  k can be 
regulated by the p a r a m e t e r s  of the external load. 

Z ~ 

6 = c o n s t  

Fig.  1 

2. Statement of the problem.  Equations.  F igure  i schemat ica l ly  shows the model under considerat ion in which 
two plane solid walls  of finite thickness  a se rve  as the moving c lus ters ;  each of two electr ic  windings consti tutes a pair  
planes x = • const  with loops para l le l  to the y -ax is  (because the sy s t em is symmet r i c  with respec t  to the x = 0 plane, 
Fig.  1 shows the half-plane x > 0). Notation for the geomet r ic  quantities is also given; it is neces sa ry  to r e m e m b e r  
that the motion of the second wall is absolutely s y m m e t r i c  to the f i r s t  one with r e spec t  to the plane of symmet ry  x --- 0. 
The one-dimensional  approximation will be used; therefore ,  it is a s s u m e d  that the wall dimensions along the y and 
z -axes  a re  la rge  and the loops x =:E b is shor t -c i rcu i t ed  (i. e . ,  the ohmic res i s t ance  is zero) and the internal winding 
x = • Al is either closed through an ohmic re s i s t ance  or  an external  sinusoidal emf is couplied to it. 

Wall motion is specified. The law of motion governing the wall is depicted in the form of a graph in Fig. 2, f rom 
which it is c lear  that the wall undergoes  per iodic  osc i l la tory  motion with constant velocity between the ext reme 

posit ions S o and S 1 (of course ,  S 1 + a < l ) .  

0 T ZT 

Fig. 2 

To be specific,  we let S(0) = Stain = S0for t = 0 and assume that the magnet ic-f ie ld  distr ibution is uniform in the 
regions  - l < x < l and /<x  < l .  Depending on the magnitude of the initial cu r ren t s  in the winding there  may be a 

discontinuity at the inner winding x =• 

The p robe lm consis ts  of finding the magnet ic-f ie ld  s t rength H = [0, 0; H(x,t)], the cur rent  density in the 
conducting wall j = [0; j(x,t);  0], and the cur ren t  in the windings for t > 0; here ,  f rom s y m m e t r y  considerat ions ,  
H( - x, t) = H(x, t), j ( - x, t) = - j (x, t). Calculations show that the sys t em becomes  periodic after conducting walls  
undergo severa l  osci l la t ion cycles .  The energy cha rac t e r i s t i c s  of the in teract ion p roce s s  in the period mode are  of 
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par t i cu la r  interest;  the overal l  values for  the mechanical  work done against the EVF and the Joule losses  over the 
entire th ickness  of one wall were  calculated for  one osci l la t ion cycle and r e f e r r e d  to a unit of a rea  in the yz-plane.  
Below these quantities will be denoted by A.  and Q.. 

We shall make use of the following assumptions:  (a) the wall conductivity c~ is constant; (b) the effect of bias 
cu r ren t s  in the nonconducting regions  0 < x < s(t) and S + a < x < b on the magnitude of the magnetic field in the sys tem 
is negligible. This is t rue  for "technical" veloci t ies  V << c. A s imi la r  p rob lem allowing for bias cu r ren t s  has been 
considered in [4] for  the case  of an infinite wall conductivity and without induced interact ion with the e lectr ic  windings; 
in this ar t ic le ,  the motion of a conducting layer  was studied allowing for radiation. 

The basic equations are: 

OH (xl, t) c ~ 02H (xl, t) 
Ot - -  496 Oxl ~ (0<xl<a} ; 

c 2 0 H ( x ~ , t )  ]x~=o= ~ [Hl 
4n6 Owl (t) S (t)] ; 

2n c~ OH(xI, t) l 2n d 
~ ( t ) - -  ~ 4-~z ~ - , x , = a - - - c - - d ~ [ ( l - - a - - S ) [ l ~ ( t ) ] : J H  ; 

d ( b - - l ) ~ [ H ~ ( t ) - -  ~-~- 3"(t)] Rc c - -  ~ -  ,2" ( t ) +  ~ ~ (t) ~--_ O. 

(2.1) 

Here H(xl, t) is the magnetic field strength in the wall 0 < x < S(t); H i (t) and H 2 (t) are the field strengths in, 

respectively, the nonconducting regions 0 < x < S(t) and S(t) + a < x < l (in view of assumption (b) the field strength 

does not depend on the space coordinates); R and ~ (t) are the ohmicresistance and external emf in the winding x --• I, 

referred to a unit of height along the z-axis (to n loops) and a unit of width along the y-axis (i. e., R and ~ (t) are 

referred to a unit of area in the yz-plane); and J (t) is the current force in the loop of the • I winding. 

Equation (2.1.1) is the induction equation in the var iables  x t , t where  x 1 =x - S(t) is the sys t em coordinate 
associa ted  with the moving wall. 

Equation (2.12) is the continuity equation for  Ey at the boundary of x = S(t) (in the coordinate  sys t em associated 
with the moving wall) [5]. Equation (2.1.3) is obtained f rom the equation 

( t )  n d O  _ J R  
c dt 

a 
((I)= 2[H1 (t) S (t) -{- f H(x l ,  t) dxl + (l - -  a - -  S) H2 (t)l) , 

0 

where  r is the magnetic flux through one loop of a r ea  1 . 2 l ,  and 

G 

ff_~_ IHl  (t) S (t) _}_ f H (xl, t ) d x l l _  c ~ OH (x~. t) . . . .  
4n6 i)Xl 

o 

which is der ived s imi la r ly  to Eq. (2.1.2) .  Finally,  Eq. (2.1.4) is the condition that the magnetic flux be constant: 

a 

Hi (t) 5' (t) -]- f H (xl, t) dxl + (I - -  a - -  S) H2 (t) + (b - -  [) H~ (t) = const ; 
0 

this equation is wri t ten using the relat ionship 

H a (t) - -  H2 (t) = --c-X4gn# (t) . 

In d imens ionless  form,  sy s t em (2.1) becomes  

d a/~ (~, ~) 
, ( 2 . 2 )  
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d ~=t 2~" [(h -- 1 -- s) ~:0 (x)] = r~5~ 0:) - ~ Oh (L ~) " - - N - -  - -  ~.i ( ' 0 ,  

d L n5 
d-~- [h.. ('0 - -  i (x)] --  ~ i if) + ~ ~ ('0 = 0 ,  

t x~ S b l H Hi 
" r  ~--~ a ' s = T '  b l =  a ' ll=:~--~-, h = ~ o ,  h l ~ H o  

H~. Ha 4~n3" ~ c:T c~"RT 

cT~o 
: 2 n n a H o ]  

H e r e  T i s  the  o s c i l l a t i o n  p e r i o d ,  H 0 i s  the  i n i t i a l  m a g n e t i c  f i e ld  s t r e n g t h  i s  s p a c e  Ix l  < 1 and $0 i s  t he  

a m p l i t u d e  of E (t). 

F o r  unknown h (~, T), h~ (~-), h 2 (T) and i (~), i n i t i a l  c o n d i t i o n s  a r e  

h ( ~ , 0 ) = i ,  ~ ( 0 ) = i ,  h ~ ( 0 ) = l ,  ~ ( 0 ) = i - - h , ( 0 ) ,  (2.3) 

and the  b o u n d a r y  c o n d i t i o n s  fo r  h( ~, t) a r e  

h(0, x)=h~(x), h ( t , ~ ) = h ~ ( ~ ) .  (2 .4)  

In o r d e r  to  o b t a i n  an  a p p r o x i m a t e  n u m e r i c a l  s o l u t i o n  to t he  p r o b l e m  (2.2)  i s  r e d u c e d  to a s y s t e m  of o r d i n a r y  

d i f f e r e n t i a l  e q u a t i o n s .  To do t h i s ,  t h e  g r a d i e n t s  dh/d~ I F;=.o and Oh/O~l ~=~, in  (2.2)  a r e  e x p r e s s e d  in t e r m s  of  ht  (~-) 
u s i n g  Eq.  ( 2 . 2 . 1 ) ,  c o n d i t i o n s  (2 .4 ) ,  and i n i t i a l  cond i t i on  h (~, 0) = 1. F o r  t h i s  p u r p o s e ,  an  i n t e g r a l  t r a n s f o r m a t i o n  in  
t h e  v a r i a b l e  ~ [6] w a s  e m p l o y e d  wi th  r e s p e c t  to  Eq.  (2 .2 .1 ) ;  a s  a r e s u l t ,  w e  o b t a i n e d  the  s o l u t i o n  

h (~, X) = hi (T) -~- [~  (1:) - -  hi (T)] ~ -~- ~ Uy (1:) sin ~ , (2.5) 

w h e r e  u~ (x) i s  the  " i m a g e "  of  t he  func t ion  u (~, x) = h (~, ~) -- [h~ (x) --  hx (x)lL w h i c h  i s  g i v e n  by the  d i f f e r e n t i a l  equa t ion  

dUr (~) 2 d 
d~ + ~ (~)~ V~ (~) = --  ~ ~ -  [h~ (~) -- (-- t) -c h~. (~)1 (Y = l, 2...) (2 .6)  

and the  z e r o  i n i t i a l  c o n d i t i o n  u ~ ( 0 ) = 0 .  The  g r a d i e n t s  Oh/o~]~= o and Oh/O~t~=t a r e  found by t e r m - b y - t e r m  
d i f f e r e n t i a t i o n  of (2 .5 ) .  E q u a t i o n  ( 2 . 2 . 2 ) - ( 2 . 2 . 4 ) ,  t o g e t h e r  wi th  E q s .  (2 .6)  and (2 .5 ) ,  m a k e  up the  sought  s y s t e m  of 

o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s .  

On t h e  b a s i s  of F i g .  2, t h e  f u n c t i o n  s(~) in  t he  equa t ion  i s  g i v e n  by 

s (x) = so q- 2 (sl--so) (x - -  n) f o r  n < x < n + ~/~ 

s (~) = s 1 --  2 (si--so) [~ --  (n -t- 1/~)1 fo r  n + 1/~ < x < n + t , 

w h e r e  n = 0, 1, 2 . . . .  a r e  n a t u r a l  n u m b e r s  c o r r e s p o n d i n g  to t he  c y c l e  s e q u e n c e  and the  e x t e r n a l  emf  h a s  the  s a m e  

p e r i o d  a s  t h e  o s c i l l a t i o n  p e r i o d  T; ~1 (~) = sin (2nx-t-0) , w h e r e  0 i s  the  p h a s e  sh i f t  b e t w e e n  the  a p p l i e d  emf  and the  
o s c i l l a t i o n s  of  t he  conduc t ing  w a l l s .  F r o m  the  e n e r g y  po in t  of  v i ew ,  t he  c a s e  of  s h o r t  p e r i o d s  i s  much  l e s s  s u i t a b l e ,  

a s  shown by  c a l c u l a t i o n s .  

3. N u m e r i c a l  r e s u l t s  and c o n c l u s i o n s .  The  s y s t e m  of equa t ions  o b t a i n e d  w a s  so lved  n u m e r i c a l l y  u s i n g  the  
R u n g e - K u t t a  method ;  in t h i s  c a s e ,  t he  n u m b e r  of  t e r m s  in  t he  s e r i e s  in (2.5) v a r i e d  f r o m  15 to 30. 

The  sough t  f u n c t i o n s ,  w i th  a s p e c i f i e d  a c c u r a c y ,  b e c o m e  p e r i o d i c  a f t e r  s e v e r a l  c y c l e s  of w a l l  o s c i l l a t i o n s ;  h e r e  
t he  g r e a t e r  the  d i m e n s i o n l e s s  p a r a m e t e r  fl, the  s m a l l e r  t he  r e q u i r e d  n u m b e r  of c y c l e s .  It i s  n e c e s s a r y  to note  tha t  

t he  p a r a m e t e r  fi i s  d i r e c t l y  a s s o c i a t e d  wi th  t h e  n u m b e r  Rm: 

4 ~ V a  4:~6a ~" V T  i 
R m =  c~ ~ c~T a - -  [5 2 ( s t - - s o ) .  
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We shall write formulas for calculating the energy quantities (referred to a unit of area in the yz-plane). Since 

all points of the conducting wall have the same velocity, the total work A, is equa! to the work done against the total 

force: 

a 

0 

i .  e .  , 

tJ-T x J-1 

A , = - -  i FxdS~ dt~_ Ho~as.~ f ~ds [h .~ (~)__h l~ . (T) ]d~ .  , ( 3 . 1 )  

t 

Within one period, twice the value of the useful work P, = A, - Q, is equal to the electric energy liberated in an 

element of winding x : + l : 

t+T Ts ~j z 

w .  = I IJ' -R-~ (~) ~ (t)l dt = ~ ~ ~ I (3.2) 
' ~ ] t .r "v 

(W, : 2P, because two conducting walls work on one electric winding); the electrical efficiency is ~ :W,/2A,. 

Two c a s e s  wil l  be c o n s i d e r e d .  

(a) Winding  x =* l is c l o sed  by an  ex te rna l  emf  and the ohmic  r e s i s t a n c e  is negl igible ,  i . e . ,  k <<1 (~ is the 
r e c i p r o c a l  of  the  Q of th is  winding).  Since i(T) ~h~(T), when  k <<1 the  las t  t e r m  Xi(~-) in (2 .2 .3 )  c a n b e  ignored  in 
c o m p a r i s o n  with the t e r m  (ds/d~-)h2 (~-). Then  Eqs .  ( 2 .2 .2 ) ,  ( 2 .2 .3 ) ,  (2.6),  and (2.5) c an  be t r e a t e d  independent ly  of  
(2 .2 .4 )  and h 1 (~-), h 2 (T), and U 7 (~-) c a n  be found whe the r  o r  not t h e r e  is an ex te rna l  winding x =:~ b. We then  use  Eq. 
(2 .2 .4 )  to find the  c u r r e n t  f o r c e  i (T) f r o m  known h 2 (T) and ~ (~) : 

0 

Subst i tut ing th is  e x p r e s s i o n  into (3.2) f o r  k = 0 we obta in  

W. = -- H~176 0 
2 

f sin(2n'r O) he (v) dv , 
-z 

s ince  the r e m a i n i n g  t e r m s  in (3.3) d rop  out upon in tegra t ion .  

Since when there is no winding x =e b we have i(~-) =h~ (~-), if is clear that for X = 0 the presence of this 

winding does not affect the energy characteristics of the interaction process and can only serve to regulate the power 

coefficient which is defined as the ratio 

tj-T [ /-t4-T t-~T 

= V2 i sin (2::T + 0) i (T) d'~ i ~ (~) d~" . 

Numerical calculations were performed for one geometry with dimensionless parameters s o = 0.1, s I = 2.5, 

l =4, and b I = 5. The dimensionless parameter 5 characterizing the amplitude of the change in magnetic field (due to 
an applied emf) with respect to the field H 0 is taken equal to I. The variables are the parameters fi(Rm) and O. As an 

illustration of a system becoming periodic, Fig. 3 shows the curves h I (~-) and h~ (T) for fi = 0.5(R m = 9.6), 0 = 37r/4, 

and X = 0 from the very beginning. The subscripts I, 2 .... corresponding to the oscillation cycles of title conducting 

layer. Thus, for example, curves with subscript i apply to the time interval from r =0 to ~ =i, curves 2 apply to 

the interval 1 << T << 2, etc. All curves at point T, = n + 1/2 undergo a discontinuity in the derivative, which is caused 
by a directional change in velocity. Curves obtained for large r are not shown on the graph because it is hard to 
distinguish them from curve 4. 
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7.5 ~.0 
25 2O 

F i g .  3 

F i g u r e s  4 and 5 show the  c u r v e  hi (T)  and h2(T) f o r  d i f f e r e n t  fl and 0 a f t e r  t he  p e r i o d i c  m o d e  h a s  b e e n  r e a c h e d .  

I 

l 1 i I v 
~0 33 6.0 

F i g .  4 

The  p a r a m e t e r s  in  F i g .  4 a r e  fi = 0.5(R m = 9.6) h = 0 ( the c i r c l e s  and t r i a n g l e s  a p p l y  r e s p e c t i v e l y  to 0 = 5~/8 
and 0 = 7~/4)  w h i l e  t he  p a r a m e t e r s  in  F i g .  5 a r e  fl = 2(R m = 2 . 4 ) h  = 0 ( the c i r c l e s ,  t r i a n g l e s ,  and c r o s s e s  c o r r e s p o n d  
r e s p e c t i v e l y  to 0 = X/4,  0 = v /4 ,  0 = ~ /2  + ~ /8 ,  0 = v2 .4 ) .  

i 
J 

Fig. 5 

F o r  p u r p o s e s  of c l a r i t y ,  t he  g r a p h  of  t he  c u r r e n t  f o r c e  i (r)  a s  a func t ion  of t i m e ,  as  c a l c u l a t e d  u s i n g  (3.3)  
( in the  p e r i o d i c  mode)  f o r  one  v a l u e  0 = 3 v / 4  and fo r  fl =2 (R  m 2 .4 )  i s  shown in F i g .  6 ( for  t h i s  v a l u e  of  0 t he  quan t i t y  
~ / i s  a p p r o x i m a t e l y  a m a x i m u m  fo r  fl = 2). It w a s  a s s u m e d  tha t  t he  c o n s t a n t  hs (0) -- 1 in  (3 .3 ) ,  i . e . ,  i (0) = 0. H e r e  
t h e  c u r v e  E l ( T )  = s i n  (2 rT + 0) f o r  the  a p p l i e d  e x t e r n a l  emf  i s  i n d i c a t e d  by  the  d a s h e d  l i n e .  

The  e n e r g y  c h a r a c t e r i s t i c s  w .  = 2 W . / H  2 0 a and ~ as  func t ions  of  0 a r e  shown in  F i g s .  7 - 9  (F ig .  7 f o r  fi = 0.2, 
F i g .  8 f o r  fl = 0,5,  and F i g .  9 fo r  fi = 2). As  i s  c l e a r  f r o m  F i g .  8, the  a m o u n t  of  e l e c t r i c a l  e n e r g y  l i b e r a t e d  p e r  p e r i o d  
as  a f u n c t i o n  of  t he  p h a s e  s h i f t  in  0 c a n  b e  both  p o s i t i v e  and n e g a t i v e  (in t h i s  c a s e ,  e n e r g y  i s  r e q u i r e d  f r o m  the  
ne twork ) .  S i n c e  fo r  W ,  < 0, w e  have  ~ = W . / 2 A .  < 0, t h e  w o r k  done  a g a i n s t  t he  E B F  upon  m o t i o n  of  t he  l a y e r  i s  
p o s i t i v e ,  i . e . ,  t he  m o d e  fo r  0 fo r  w h i c h  W ,  < 0 r e p r e s e n t s  not  t h e  m o t i v e  m o d e  but  t he  m o d e  o c c u r r i n g  w h e n  the  
J o u l e  l o s s e s  w i t h i n  t he  c o n d u c t i n g  m e d i u m  e x c e e d  t h e  a m o u n t  of  w o r k  p e r f o r m e d ;  t h e r e f o r e ,  p a r t  of the  e x t e r n a l  
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elec t r ic  energy goes into Joule  heating. In the local sense,  f rom (1.2), such a mode cor responds  to the case  of 
negative k, i . e . ,  when E has the same  di rec t ion as (v x ~i)c-~. 

For  other  values of fi, the interval  for 0 is much smal le r  and includes only modes with posi t ive energy 

l iberat ion (Figs. 7, 9). 

F igure  10 shows a graph of 2W./H20a as a function of R m for the case  k = 0,8 = 1 and maximum values of 2W./ 
/H20a obtained for four values of fi = 4, 2, 0.5,  and 0.2. This graph which is obtained for a given systera assuming 
R m is small  when 5 =1, is shown by the dashed line. 

Calculations for R m << l(not given) show that the maximum energy W, max for fixed R m occurs for a phase shift 

0 = ~r; in this case, we see that W. max > 0 only if the periodic magnetic field has a constant component greater than 

the oscillation amplitude. 

(b) Here, 5 = 0 for which the applied enff is zero and energy drain takes place to a winding with o]hmic resistance. 

For numerical calculation the geometric parameters S O , s I , l and b I are the same as for case (a). 

Since it is known that for R m << 1 this variant is of no particular interest to the magnitude of usable energy, 

calculations were performed for p = 2 and fi = 0.5 (R m = 2.4 and 9.6) and different k. Figure ii shows t]he functions 

hi( ~-}, h2(T) , and fiT) obtained after the system becomes periodic for two values of P(Rm) and k = 5 (the circles and 

trangles correspond respectively to p = 0.5 (R m = 9.6) and fi = 2.0(R m = 2.4)). 

For convenience, Fig. 8 and i, which show 2W,/H~0 a as a function of k and ~(k} for the case k = 0,5 ~ 0, also 

show 2W,/H20 a as functions of 0 and ~(0) for these values of R m. It is clear that even for such large values of R m 

(2.4 and 9.6) the liberated energy and the electric efficiency ~ are less than the same quantities when an external emf 

is used (for a purely ohmic load). For example, for R m = 2.4, as is clear from Fig. 9, the maximum values of the 

electrical efficiency and the liberated electrical energy when an external, emf is used ~ire approximately two times 

greater than the maximum values of the same quantities when an ohmic load is applied. When employing such a 

comparison we should keep in mind the fact that when working with an external emf one optimization parameter 

remains unused (the values 5 = 1 used in calculations is, of course, not optium) whereas for an ohmic load all 
optimization possibilities are exhausted. 
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